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Abstract-The paper analyzes downward two-phase flow of water and its vapor in a vertical pipe exposed 
to a uniform gravitational field. The flow is assumed to be adiabatic and one-dimensional. The mathematical 
model used is the equilibrium, homogeneous diffusion model. The study is an application of methods used 
for dynamical systems and is geometrical-topological in nature The key to the argument is the deter- 
mination of the singular and turning points of the governing equations with the help of which it becomes 
possible to sketch the ‘portrait’ of trajectories (solution curves) in the phase space composed of pressure 
P, enthalpy h, and coordinate z, with the mass-liow rate G treated as a parameter. The analysis shows that 

choking can set-in only at the end of the channel and a critical cross-section inside it is impossible. 

INTRODUCTION 

THE MOTIVATION for this paper was a desire to under- 
stand the phenomena which occur in geothermal 
wells, with emphasis on choking. In an earlier paper, 
[l], we examined upward flows in which the shearing 
stress and gravitational acceleration were codirec- 
tional. In this paper we analyze downward flows 
which characterize reinjection wells, now mandatory 

in geothermal installations to mitigate subsidence. We 
continue to employ the homogeneous diffusion model 

which seems to be adequate for our purpose and con- 
fine our analysis to steady, adiabatic, equilibrium 
flows in vertical channels of constant cross-section. 
We continue to make use of geometrical methods 
whose aim it is to describe all possible patterns of 
solution curves (trajectories) by examining their topo- 
logical structure in phase space without actually solv- 
ing the system of differential equations. Such an analy- 
sis is very useful as a guide for the organization of 
numerical solutions by computer. 

In this study we present a specific application of a 
very general method, discussed in detail in ref. [2]. 
The field of applications of the general method is 
not restricted to the homogeneous flow model or to 
adiabatic walls and prevalence of equilibrium between 
the two phases stipulated in the present study. Thus, 
this analysis may prove itself to be useful in other 
applications too, notably in nuclear engineering. 

The key to the argument is the study of the math- 
ematical characteristics of points in phase space and 
their classification into regular points, turning points 
and singular points. We recall that turning points are 
associated with choking at the end of a channel. The 
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general analysis shows that only three types of singu- 
lar points (saddle points, nodal points, spirals) are 
likely to be encountered, regardless of the complexity 
of the mathematical model employed. Saddle points 
and nodal points (but not spirals) signify the appear- 
ance of a choked section in the interior of the channel. 

In the case of upward flow, ref. [l], no trajectories 

contained singular points, and turning points cor- 
responded to choking at the upper end of the pipe. 
The accelerating action of gravitation in the present 
case suggests that downward flow may be different. 
In particular, we shall try to discover whether this 
channel can choke other than at exit. 

THE PROBLEM IN THE PHYSICAL SPACE 

The nature of the problem in the physical space is 
illustrated in Fig. 1. We are given a vertical adiabatic 
pipe of constant area A = nD 2/4 and length L through 
which there flows downwards, but in the positive z- 
direction, and in steady state, a fluid which may evap- 
orate or condense. In our examples this will be water 
and steam in thermodynamic equilibrium. The ter- 
restrial gravitation g has the same direction as the 
velocity MJ and hence the shearing stress rw at the wall 
is opposite to it. We are to determine all flows against 
a given back-pressure P,, maintained outside z, = L 
and to identify the subset of initial conditions which 
may occur at the entrance z, = 0, the flow having 
expanded isentropically through the very short con- 
uergent section from a stagnation state 0 with w0 = 0. 
The state of the system is described by the fields 

P(z), h(z), and G = const. as a parameter 

where G = k/A is the specific flow rate. The former 
two constitute the dependent functions of the 
problem. The external pressure P, must be equal to 
or lower than the exit pressure P, at z, = L, and the 
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NOMENCLATURE 

4 matrix defined in equation (4) Z coordinate in flow direction. 

;: 
speed of sound 

Cr.2 

vector defined in equation (4) Greek symbols 
quantities defined in equations (2a) CY void fraction 
and (2b) r phase space (r , subcritical, 

D pipe diameter, divergence r2 supercritical) 
9 discriminant, equation (1 lc) 

; 
ratio of specific heats 

f friction factor determinant, equation (6~) 
G mass flux density characteristic direction 

9 acceleration due to gravity I: defined in equation (6a) 
H defined in equation (6b) P density 
h specific enthalpy 0, Q; state vector. 

J Jacobian 
L pipe length Subscripts 
rir mass-flow rate a external 

P pressure e at exit 

Y singular point L liquid 

s specific entropy W at wall. 
T temperature 
V directional vector Superscripts 

V specific volume liquid 

W barycentric velocity I, vapor 

X dryness fraction * at singular point. 

slognotion state 
with w.= 0 

WORKING EQUATIONS 
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With the choice of state variables made earlier, we 
can transcribe the usual conservation equations (see, 
e.g. ref. [l] or any standard text) to the form : 

dG2 

dz 
= 0 (la> 

This form is very convenient for analysis with G2 
chosen as a variable parameter. Here 

C, = (ap/aP), (always >O) ; 

C2 = (ap/&), (always <O) (2a,b) 

I 
we 

except for anomalous regions in the thermodynamic 
outside pressure P. state diagram, ref. [3]. The equation of state is that of 

FIG. 1, The physical problem. Note that P, need not be equal the flowing substance, usually available in the form of 
to P,, but P, > P,. tables or computer codes. We use the internationally 

approved Steam Tables [4]. 
Equation (1 b) incorporates the simplest possible 

variation of ti = GA with Pa, not necessarily equal to closure condition 

P,, is of interest for choking : when it attains its largest 
value at constant stagnation conditions, the flow is 

r, = fpw2/2 = f G2/2p (3) 

choked. with f a constant. 
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The system of equations (lat(lc) is of the standard 

form 

studied extensively in ref. [2]. 

THE MATHEMATICAL PROBLEM 

Equations (lak(lc) constitute a set of coupled, 
non-linear, first-order, ordinary differential equations 
conceived as functions of the single independent vari- 
able z, and parametrized with respect to G*. Conse- 
quently, the analysis can be carried out in a phase 
space I consisting of only three dimensions : h, P, z. 
A trajectory (solution) is the vector function a(z), 
where its components h and P together with the par- 
ameter G * determine the state in a cross-section. 

By Cramer’s rule, we can write down the following 
equivalent form of system (la)-( lc) : 

dP l-I(G*; P,h) 
-= 
dz A(G*; P,h) 

dh II(G’ ; P, II) 

dz = A(G*; P,h)’ 

(54 

(5b) 

Here 

n= -s(l -F)+pg (6a) 

H= _2fG4 C, 
D’p”+g 

with the determinant of the matrix of equations (la)- 

(lc) 

A= 1 +C,+C,). (6~) 

THE PHASE SPACE 

Equations (5a) and (5b) can be interpreted in the 
phase space I, Fig. 2, as defining a vector field 
V(h, P, z) whose elements are everywhere tangent to a 
trajectory, such as m in the figure. The components 
of V are: II in the P-direction, H in the h-direction 
and A in the z-direction. 

The study of the vanishing of the three components, 
i.e. the loci Il = 0, H = 0, and A = 0, is central to our 
analysis. All three loci are cylinders in F, because they 
do not depend on z explicitly, and the relationships 
between them can be clearly depicted by drawing their 
traces in the thermodynamic h, P diagram which 
forms the base of I, Figs. 3 and 4. 

Any line parallel to the z-axis in phase space is the 
intersection of some three cylinders H-const., 
II = const., A = const., and constitutes, therefore, an 
isocline, that is the locus of vectors V of a given 
magnitude and direction. Thus, if necessary, it is pos- 
sible to apply the method of isoclines to sketch 
HMT 30:,-H 

FIG. 2. Typical trajectory m in phase space F showing direc- 
tional vector V and its components A, Il, H. 

L 

I 

FIG. 3. Subspace F (G = const.). 

solutions. A more elaborate, but more 
representation is discussed in the sequel. 

convenient 

The cylinder A = 0, Fig. 3, divides F into two sub- 
spaces. On cylinder A = 0 the mass-flow rate acquires 
the critical value 

G* = p/(C, + C2/p)“* (7) 

and the considerations of ref. [l] show that all vel- 
ocities on this cylinder are equal to the local sound 
velocity 

a = (C, + c,/p>- I’* I [@P/i?p)J”* (74 

i.e. the velocity of propagation of pressure waves of 
small amplitude and long wavelength. In subspace I, 
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z 

r(G=const) 

h 

P 

Cr 
FIG. 4. Singular points in r. 

with A > 0 (G < G*) the limb m, of curve m ascends 
in the z-direction, whereas its limb m2 descends in 
rz(G > G*). It follows that A = 0 is the locus of all 
turning points. Any curve m which intersects the cyl- 
inder A = 0 from below must do so with a tangent 
perpendicular to the z-axis and must attain a 
maximum in z there, provided that ll and H do not 
vanish at this point simultaneousIy with A. We note 
that: 

(a) All flows in I-, are subcritical. 
(b) All flows in r2 are supercritical. 
(c) At all points on A = 0 the local flow velocity is 

that of sound, equation (7a). 
(d) Since in the physical space we must have dz > 0, 

curve m can only be traversed along m, in the direction 
of V(A > 0) or along m2 in the direction of -V. The 
possibility of shock formation in r2 is disregarded as 
being of no importance at present, given that only 

subcritical flows can set in from a stagnation point 
with w,, = 0 and convergent entrance, Fig. 1. 

In ref. [l] the vector components lI and H were of 
one sign, always negative in r,. At present both can 
change sign, equations (6a) and (6b). It can be proved 
by matrix algebra (see refs. [l, 21) that the vanishing 
of H or fI alone on A = 0 cannot occur. Thus either 

OI 

H=OandII=O on A=0 @a) 

H#OandII#O on A=O. (gb) 

In other words, the three cylinders H = 0, ll = 0 and 
A = 0 must intersect along a single line 9, Fig. 4. 
Along this line equations (Sa) and (5b) fail to deter- 
mine the components of V. This, then, is the locus of 
the singular points of the system. The angles with 
which a trajectory crosses A = 0 at Y must be deter- 
mined by other means, and depends on the topological 
nature of the singular point. No such possibilities 
existed in upflow. 

and the discriminant of equation (lo), namely 

g* = D*2-4 J*. (llc) 

At a saddle point 

9* >O with J* ~0 

at a nodal poin t 

In the general case, the character of the singular 
point is obtained by local linearization. In this simple practical significance in this context. 

t The vanishing of the first-order terms would lead us to 
a consideration of degenerate singular points which have no _. 

case it is convenient to apply an equivalent but more 
direct method. 

The need to analyze the nature of the singular point 
arises from the fact that any numerical procedure will 
fail there, because the system of algebraic equations 
employed for the numerical solution becomes inde- 
terminate when H = ll = A = 0 or incompatible 
when A = 0 with H # 0, II # 0. 

SINGULAR POINTS 

Before we proceed to examine the nature of the 
singular points, we notice that for a given flow rate G 
there exists a single trace S of Y in h, P, Fig. 4, whose 
coordinates we denote by h* and P*. 

Since neither of the components H, ll, A depends on 

z, we seek the projection of the direction 1 = (dh/dP)* 
along Y into the base plane h, P. We note that along 
Y A = 0, which proves that this is also the direction 
of V, because vector V on A = 0 must there be normal 
to z in r. 

To calculate the slope 9 = (dh/dP)* at any singular 

point S, we take a Taylor-series expansiont of both 
Hand lI around S(h*, P*) and employ de 1’Hopital’s 
rule to obtain 

dh * 
rl= dp 

( > 

H,(G; h*, P*)+ Hh(G; h*, P*)(dh/dP)* 

= l-I,(G; h*, P*)+&(G; h*, P*)(dh/dP)*’ (9) 

Here subscripts h and P denote partial differentiation, 
and the asterisk denotes a value calculated at the 
singular point S. This is equivalent to the following, 
quadratic characteristic equation : 

l-I;q2 + (II,* - H$)q - Hp* = 0. (IO) 

The theory of linear, ordinary differential equations 
(see, e.g. ref. [S] or any standard text), proves that 
the nature of the singular point depends on three 
quantities, the divergence 

D* = l-I,*+H,* (114 

the Jacobian 
J* = II,*Hf -l-I:H,* (1 lb) 

Wa) 



Two-phase downflow in a vertical pipe 1431 

Table 1. Locus of singular points S as a function of the 
parameter G: f = 0.08 ; D = 0.25 m 

P* h+-hL 

(bar) a* (kg 2-T s-1) (kJ kg-‘) (kJ $) 

0.1 0.98 126 15.7 191.8 
1.0 0.91 1010 14.8 417.5 
2.0 0.84 1857 13.8 504.8 
3.0 0.77 2637 12.9 561.6 
4.0 0.70 3373 11.9 604.9 
5.0 0.64 4076 10.9 640.4 

10.0 0.34 7283 5.9 162.9 
15.0 0.05 10193 0.8 844.9 
15.7 0.01 10586 0.1 854.6 
15.8 0.00 10600 0 856.0 

a 

FIG. 5. Relation between void fraction a and dryness fraction 
x: 1,O.l bar; 2, 1.0 bar; 3, 15 bar. 

h,-enthalpy on liquid boundary. 

9* >O with J* >O (12b) 

at a spiral point 

a*<o. (124 

With an equation of state given in tabular or other- 
wise unwieldy form, it is not possible to establish the 
appropriate signs other than by systematic, numerical 
exploration. First, we recall that A = 0 implies that 
w* = a* (speed of sound), which in the liquid region 
is of the order of 1500 m s-‘. The additional, now 
sufficient, condition for the existence of a singular 
point in that region, say H = 0, can be derived from 
equation (6b) with G = pa* ; we obtain 

2C, fa’” 
-p+g=o. 

D 
(13) 

It is not difficult to convince oneself that this condition 
cannot be met for any reasonable values off and D. 
Thus we conclude that reinjection wells which operate 
without flashing can choke only at the bottom. By 
contrast, the occurrence of a singular point S situated 
in the two-phase region is not excluded, because 
then the speed of sound may become as low as a* = 
12 m s-‘. 

To complete the analysis, we perform numerical 
calculations for f = 0.008, D = 0.25 m and trace the 
movement of point S in the h, P coordinates with the 
aid of Table 1. It soon transpires that point S is located 
close to the boundary between the two-phase region 
and the liquid. This is clear from the small values of 
h*- hL, where hL is the saturation enthalpy. As the 
mass-flow rate G increases, and the critical pressure 
P* increases, Seventually reaches the phase boundary 
at P* = 15.8 bar, and then crosses into the liquid 
region where a different equation of state takes over. 

All states which correspond to singular points are 
characterized by a low pressure (P* < 15.8 bar) and 
very low dryness fraction x* (order IO-* at 0.1 bar). 
Nevertheless, the corresponding void fraction 

xv“ 
u- 

x(u” - 0’) + D’ 

where v is the specific volume (u”-steam, u’-liquid), 

1.0 

IL 

;4: 
0.5 1.0 1.5 

P: MPo 

FIG. 6. Variation of dryness fraction with pressure at singular 
point S when located in the two-phase region. 

P 

FIG. 7. Topology of nodal point. 

ranges over 0 < a < 1, increasing very rapidly with x 
in this range, Fig. 5. Consequently, all flow regimes 
can occur in this range. Naturally, these are potential 
states at the singular point. The states along the tra- 
jectories are not so confined. The diagram of Fig. 6 
traces the variation of tl* with pressure at S. 

A computer-aided probing of conditions (12at 
(12~) indicates that the singular point S in this case is 
always a nodal point. The diagram in Fig. 7 contains 
a sketch of the trajectories near a typical, nodal point. 
The two characteristic directions are denoted by ft, 
and n 2 ; they both slope upwards. There is an infinity 
of trajectories tangent to n, and a single trajectory 
tangent to q2. 
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LIOUID t VAPO 

FIG. 8. Vector field V 

ENTROPY 

The rate of change of entropy is given by the general 
formula 

ds 1 dh 1 dP 

dz=?dz pTdz (154 

which, in view of the conservation laws, can easily be 

shown to be equivalent to 

(15b) 

Thus, the requirement of increasing entropy, ds > 0, 
is always satisfied in the flow direction, dz > 0. 

TRAJECTORIES 

We continue to limit attention to the subcritical 

space F,(A > 0, G < G*, w < a*). 
We can form a clear idea about the topology of 

trajectories in the two-phase region in two steps. First, 
we examine the projection v’ of vector field V into the 
h, P diagram by an analysis of the loci A = 0, H = 0 
and II = 0, Fig. 8. Each of them divides the plane 
into a negative part and a positive part. Secondly, we 
introduce the characteristic directions q, and qz of the 
nodal point. The relative positions of these lines have 
been accurately drawn in Fig. 7 which leads us to 
consider five distinct areas denoted by arabic 
numerals in the diagram of Fig. 8. 

The directions of V’ have been drawn in the diagram 
in accordance with the equations quoted in the earlier 
part of this paper. All vectors V’ point in a direction 
away from S, and this signifies that a truns~tion from 
subcr~#~caZ~~w into supercriticu~~~~ through the nodaf 
point is impossible. In fact, state S cannot be reached 
at all, and its presence merely serves, so to say, to 
mold the pattern of trajectories. In fact, the vector 
field V’ forms a vivid basis on which to judge the 
different types of fIow sequences that may be expected 
to exist. 

In any case, it is now quite clear that a downward 

flow cannot acquire a choked cross-section other than 
at the bottom exit. 

More specifically 

in area 1 H<O, 11<0; 

in area 2 H>O, I-I>o; 

in areas 3-5 H < 0, II > 0. 

These signs determine the local directions of vectors 
V’. A typical trajectory spanning areas 1-3, the latter 
placed above Q,, is seen sketched in the graph of 
Fig. 8. On such a trajectory the flow has a maximum 
enthalpy on H = 0 and a maximum pressure on 
II = 0. The flow has a tendency to evaporation and 
proceeds to an intersection with A = 0 at C. If state 
C (pressure Pr) is reached at the end of the pipe, the 
flow is choked there on condition that P, < P:. If 
state C falls on the trajectory outside the channel, the 
Row is not choked at the end, and we can assert that 
PC = 9,. 

In area 4 we encounter an infinity of trajectories 
which are tangent to q ,. They all move away from 
A = 0 which means that they can never lead to 
choking. Such flows show a tendency towards con- 
densation, and all such trajectories attain the liquid 
phase, eventually. 

In area 5 we find a single trajectory tangent to ylZ 
(not shown), as well as trajectories whose origin is in 
5’ and which cross A = 0 from the supercritical area 
IT2 to the subcritical area I, ; their behavior is the 
same as those in area 4. 

It may be worth remembering that all the directions 
of vectors V’ along A = 0 must coincide with 
s = const. This condition is a consequence of equation 
(I 5b) which proves that the sign of ds changes at a 
turning point from ds > 0 along V’ in I, to ds < 0 
along V’ in Iz. 

PERFECT GAS 

To conclude the analysis, it is very instructive to 
draw the phase portrait for the simplest possible equa- 
tion of state, a perfect gas with constant specific 
heats, say for 7 = 1.3. Such a variant is not in itself 
important, because gravitational effects in gases are 
negligible at all realistic column heights z. Never- 
theless, the exercise is instructive for two reasons. 
First, it is now possible to derive all relations in closed 
form. Secondly, the full ‘portrait’ so obtained, being 
topological in nature, gives a graphical picture of what 
to expect qualitatively in the presence of more com- 
plex equations of state. In this manner, we obtain a 
fuller picture than the one sketched in Fig. 8. 

It is now sufficient simply to quote the equations, 
because their derivation should be evident. We now 

record 

Hr = 4a’u/P2 > 0 

Hh* = --3U’K/Ph < 0 
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II,* = ((3a2+h)rc+phg}/Ph > 0 (16~) 

l-I: = -{(2a2+h)K+phg}/h2 < 0 (16d) 
where 

Ic = pg/y, a2 = (y- 1)h (I6e,f) 

P = YP/(Y - 1% (1%) 

Hence 

L)*= p2 ~[2+(Y-l)(3-2Y)-ogl~ > 0 (17) 

and 

J* = l-Q%: - rJ:IY,* > 0. (18) 

Referring to equation (12b) we conclude that we 
encounter here also a nodal point. The characteristic 
directions are 

V, = (9~ - 8)P/8(~ - l)h (19a) 

~2 = [(@-5)+3(~-- l)lf’P(~- IF. (19b) 

The preceding equations have been programmed 
on a computer linked with an automatic plotter. The 
resulting pattern with G* = 2166 kgmm2 s’, P* = 10 
bar, h* = 1.2 x lo3 kJ kg-’ is shown in Fig. 9. 

CONJECTURE 

We recall once more that a mathematical model of 
two-phase flow consists of three components : a set of 
conservation laws, a set of closure conditions and an 
equation of state. The two examples analyzed in this 
paper, Figs. 8 and 9, resulted in topologically identical 
‘portraits’ of trajectories in phase space. The two cases 
were based on identical forms of the conservation laws 
and closure conditions ; they differed in the equation 
of state : the complex equation for steam and water in 
Fig. 8 and the very simple equation of a perfect gas in 
Fig. 9. If it could be shown convincingly that the 
two patterns turned out to be identical other than by 
coincidence, that is that the forms of the conservation 
laws and closure conditions impose a topological ‘por- 
trait’ which is insensitive to the equation of state, in 
spite of the fact that quantitatively the trajectories are 
vastly different, we would be able greatly to simplify 
future analyses. 
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ECOULEMENT DIPHASIQUE DESCENDANT DANS UN TUBE VERTICAL ET 
PHENOMENE DE CHOC: MODELE DE DIFFUSION HOMOGENE 

R&sum&On analyse I’ecoulement diphasique d’eau liquide et de vapeur qui descend dans un tube vertical 
avec un champ gravitationnel uniforme. L’ecoulement est suppose etre adiabatique et monodimensionnel. 
Le modele mathematique utilise est un modele d’tquilibre et de diffusion homogene. L’etude est une 
application de mtthodes utilistes pour les systemes dynamiques et il est de nature gtometrique et topolo- 
gique. La clef de l’argument est la determination des points singuliers et de retournement des equations 
qui rend possible la description des trajectoires dans l’espace de phase compose de la pression P, de 
l’enthalpie h et de la coordonnee z, avec le debit masse specifique G trait& comme un parametre. L’analyse 
montre qu’un choc peut s’installer settlement a l’extremite du canal et qu’une section critique a l’interieur 

est impossible. 
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ZWEIPHASENABWd;RTSSTRt)MUNG IN EINEM SENKRECHTEN ROHR UND 
DAS PHANOMEN DER AUFSTAUUNG : DAS HOMOGENE DIFFUSIONSMODELI! 

Zusammenfassung-Es wird die abwlrtsgerichtete Zweiphasenstrijmung aus Wasser und Wasserdampf in 
einem senkrechten Rohr in einem gleichfiirmigen Gravitationsfeld untersucht. Die Striimung wird als 
adiabat und eindimensional betrachtet. Als mathematisches Model1 wird das homogene Diffusionsmodell 
verwendet. Es werden Methoden, die fur dynamische Systeme angewandt werden, eingesetzt. Das Model1 
ist geometrisch-topologischer Natur. Bestimmt werden Singularititen und Wendepunkte der Erhal- 
tungsgleichungen, mit deren Hilfe es miiglich wird, das “Port&” der Trajektorien (Liisungskurven) im 
Phasenraum zu zeichnen, die sich aus dem Druck P, der Enthalpie h und der Koordinate z zusammensetzen, 
mit der Massenstromdichte G als Parmeter. Die Untersuchung zeigt, da6 Aufstauung nur am Ende des 

Rohres auftreten kann und da6 ein kritischer Querschnitt innerhalb unmiiglich ist. 

ABYX0A3HbItr HWCXOAIIIIDi~ I-IOTOK B BEPTMKAJIbHOtt TPYEE II 5IBJIEHHE 
APOCCEJIMPOBAHMI: FOMOf’EHHAR ,IIW@0Y3MOHHAfi MOREJIb 

Arusaraunn-Mccnenyercn nayx*a3trarl HHCX~~~~HI ~OTOK e.om H aonatroro napa a aeprriranbeol 
~py6e, nohtememrol B oarioponaoe rpaanratmomroe none. Teqemre cmrraercn aAHa6aTHVecxHM ti 
OUHOMepHblM. B KaWCTBe M~TCMBTHYCCKOiiMOJlCJlH ebr6parra paBHO~HaKrOMO~HHaKUH~y3HOHHaK 
MOUenb.~pHMCHK~TCKrCOMeT~-TOnO~OrH~ec*HeMCTO~,H~Onb3yeM~e~K~HaMH~~KHXCHCTCM. 

Onpenenerrbt cmirynnptrbre roYtot sosrpara onpcncmoxxufx ~~~BHCHHU. -iTo tro3aonner nonyvHTb 

WlOpTpeT>>TpaeKTOpH~(KpHBblX pcmeHHK)B~3OBOMnponpaHcTMrraMeHHK P,3HT~bnHH h H KOOP 

AHHBTbl z(MalCCOBblfi PaCXOA G paCCMaTpHBi3CTCK KBL Ila~bfCTp). AHWlH3 llOK83blB8CT,‘llO UpOCCCJlH- 

pOBaHHe MOxKeT B03HHKHyTbTOJlbKO B KOHW KaHaJla,a CyulecrBOsaHHt KpHTHIccKOrOcellCHHK BHyTpH 

Hero HeB03MOZUHO. 


